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Abstract. The CP asymmetries of the decay B0
d → K0K̄0, which originates from b̄ → d̄ss̄ flavor-changing

neutral-current processes, and its CP -averaged branching ratio BR(Bd → K0K̄0) offer interesting avenues
to explore flavor physics. We show that we may characterize this channel, within the standard model, in a
theoretically clean manner through a surface in observable space. In order to extract the relevant information
from BR(Bd → K0K̄0), further information is required, which is provided by the B → ππ system and the
SU(3) flavor symmetry, where we include the leading factorizable SU(3)-breaking corrections and discuss
how experimental insights into non-factorizable effects can be obtained. We point out that the standard
model implies a lower bound for BR(Bd → K0K̄0), which is very close to its current experimental upper
bound, thereby suggesting that this decay should soon be observed. Moreover, we explore the implications
for “color suppression” in the B → ππ system, and convert the data for these modes in a peculiar
standard-model pattern for the CP -violating B0

d → K0K̄0 observables.

1 Setting the stage

The B factories allow us to confront the Kobayashi–Mas-
kawa (KM) mechanism of CP violation [1], which de-
scribes this phenomenon in the standard model (SM), with
a steadily increasing amount of experimental data (for a
recent overview, see [2]). An interesting element of this pro-
gram is the decay B0

d → K0K̄0. It originates from b̄ → d̄ss̄
flavor-changing neutral-current (FCNC) processes, which
are governed by QCD penguin diagrams in the SM. Should
these topologies be dominated by internal top-quark ex-
changes, theCP asymmetries ofB0

d → K0K̄0 would vanish
in the SM thanks to a subtle cancellation of weak phases,
thereby suggesting an interesting test of the KM mecha-
nism (see, for instance, [3]). However, contributions from
penguins with internal up- and charm-quark exchanges are
expected to yield sizeable CP asymmetries inB0

d → K0K̄0

even within the SM, so that the interpretation of these ef-
fects is much more complicated [4]. In view of the impressive
progress since these early studies of B0

d → K0K̄0, and the
strong experimental upper bound for the corresponding
CP -averaged branching ratio [5],

BR(Bd → K0K̄0)

≡ BR(B0
d → K0K̄0) + BR(B̄0

d → K0K̄0)
2

< 1.5 × 10−6 (90% C.L.) , (1)

it is interesting to return to this decay.
a e-mail: Robert.Fleischer@cern.ch

As usual, we consider the following time-dependent
rate asymmetry:

Γ (B0
d(t) → K0K̄0) − Γ (B̄0

d(t) → K0K̄0)
Γ (B0

d(t) → K0K̄0) + Γ (B̄0
d(t) → K0K̄0)

= Adir
CP (Bd → K0K̄0) cos(∆Mdt)

+Amix
CP (Bd → K0K̄0) sin(∆Mdt) , (2)

where Adir
CP (Bd → K0K̄0) and Amix

CP (Bd → K0K̄0) de-
scribe the direct and mixing-induced CP asymmetries, re-
spectively. In order to analyze these observables, we have
to parameterize the B0

d → K0K̄0 decay amplitude appro-
priately. Within the SM, we may write

A(B0
d → K0K̄0) = λ(d)

u PKK
u +λ(d)

c PKK
c +λ

(d)
t PKK

t , (3)

where the λ(d)
q ≡ VqdV

∗
qb are CKM factors, and the PKK

q

denote the strong amplitudes of penguin topologies with
internal q-quark exchanges, which receive tiny contribu-
tions from color-suppressed electroweak (EW) penguins
and are fully dominated by QCD penguin processes. If we
now eliminate λ(d)

t with the help of the relation

λ
(d)
t = −λ(d)

u − λ(d)
c , (4)

which follows from the unitarity of the Cabibbo–Koba-
yashi–Maskawa (CKM) matrix, and use the Wolfenstein
parametrization [6], we obtain

A(B0
d → K0K̄0) = λ3APKK

tc

[
1 − ρKKeiθKK eiγ]

, (5)
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where PKK
tc ≡ PKK

t − PKK
c , and

ρKKeiθKK ≡ Rb

[
PKK

t − PKK
u

PKK
t − PKK

c

]
, (6)

with

Rb ≡
(

1 − λ2

2

)
1
λ

∣∣∣∣Vub

Vcb

∣∣∣∣ =
√
�̄2 + η̄2 = 0.37 ± 0.04 . (7)

Applying the standard formalism to deal with the CP -
violating observables provided by (2) [2], we straightfor-
wardly arrive at

Adir
CP ≡ Adir

CP (Bd → K0K̄0)

=
2ρKK sin θKK sin γ

1 − 2ρKK cos θKK cos γ + ρ2
KK

(8)

Amix
CP ≡ Amix

CP (Bd → K0K̄0) (9)

= sin φd − 2ρKK cos θKK sin(φd + γ) + ρ2
KK sin(φd + 2γ)

1 − 2ρKK cos θKK cos γ + ρ2
KK

,

where the B0
d–B̄0

d mixing phase φd agrees with 2β in the
SM; β and γ are the usual angles of the unitarity triangle
of the CKM matrix.

The outline of this paper is as follows: in Sect. 2, we
show that B0

d → K0K̄0 can be efficiently characterized in
the SM through a surface in the three-dimensional space of
its observables. In order to extract the relevant information
from theCP -averaged branching ratio, an additional input
is needed, which is offered by the B → ππ system and the
SU(3) flavor symmetry. We show how insights into non-
factorizableSU(3)-breaking effects in the relevant hadronic
penguin amplitudes can be obtained, and point out that
the current B-factory data are consistent with small cor-
rections, although the experimental uncertainties are still
large. One of the main results of our analysis are lower
bounds for BR(Bd → K0K̄0), which are remarkably close
to the experimental upper bound in (1), thereby suggest-
ing that this decay should be observed in the near future
at the B factories. In Sect. 3, we demonstrate then that
the measurement of the Bd → K0K̄0 observables will al-
low us to reveal the hadronic substructure of the B → ππ
system, providing in particular insights into the issue of
“color suppression”. Conversely, using the pattern of the
current B-factory data as a guideline, we calculate allowed
regions in the space of the CP -violating Bd → K0K̄0 ob-
servables within the SM, which may be helpful in the future
to search for new-physics (NP) contributions to b̄ → d̄ss̄
FCNC processes. Finally, we summarize our conclusions
in Sect. 4.

2 Standard-model picture of B0
d → K0K̄0

2.1 Preliminaries: top-quark dominance

It is instructive to have first a brief look at the case of
top-quark dominance, where (6) simplifies as follows:

ρKKeiθKK = Rb . (10)

Since theCP -conserving strong phase θKK vanishes in this
expression, (8) implies that the direct CP asymmetry of
Bd → K0K̄0 vanishes as well. The analysis of the mixing-
induced CP asymmetry (9) is a bit more complicated. If
we take into account that we have φd = 2β in the SM, and
use the relations

sinβ =
η̄√

(1 − �̄)2 + η̄2
, cosβ =

1 − �̄√
(1 − �̄)2 + η̄2

,

(11)

sin γ =
η̄√

�̄2 + η̄2
, cos γ =

�̄√
�̄2 + η̄2

(12)

between the angles of the unitarity triangle and the Wolfen-
stein parameters [6], we may show that Amix

CP would actu-
ally also vanish. This can be seen more transparently if we
eliminate λ(d)

u instead of λ(d)
t in (3). Assuming then top-

quark dominance, we obtain a cancellation between the
weak phase β of λ(d)

t and the β introduced through the SM
value of φd, thereby yielding a vanishing mixing-induced
B0

d → K0K̄0 CP asymmetry [3]. For our purposes, the
parametrization in (5) is, however, more appropriate.

2.2 Characteristic surface in observable space

In the following analysis, we assume that

φd = 2β = (47 ± 4)◦ , γ = (65 ± 7)◦ , (13)

as in the SM [7]. By the time theCP -violating asymmetries
in (8) and (9) can be reliably measured, the picture of these
parameters will be much sharper. The measurement of Adir

CP
and Amix

CP allows us then to extract the hadronic parameters
ρKK and θKK in a theoretically clean manner. Although
these quantities are interesting for the analysis of charged
B → πK modes, as we will see below, and can nicely be
compared with theoretical predictions such as those of the
“QCD factorization” approach [8], they do not provide –
by themselves – a test of the SM description of the b̄ →
d̄ss̄ FCNC processes mediating the decay B0

d → K0K̄0.
However, so far, we have not yet used the information
offered by the CP -averaged branching ratio introduced
in (1). The parametrization in (5) allows us to write

BR(Bd → K0K̄0) (14)

=
τBd

16πMBd

Φ(MK/MBd
,MK/MBd

)|λ3APKK
tc |2〈B〉 ,

where

Φ(x, y) =
√

[1 − (x+ y)2] [1 − (x− y)2] (15)

is the two-body phase-space function, and

〈B〉 ≡ 1 − 2ρKK cos θKK cos γ + ρ2
KK . (16)

Ifwe nowuse the SMvalues ofφd and γ, wemay characterize
the decayB0

d → K0K̄0 – within the SM – through a surface
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Fig. 1. The surface in the Adir
CP –Amix

CP –〈B〉 ob-
servable space of B0

d → K0K̄0 for φd = 47◦ and
γ = 65◦, characterizing this decay in the SM. The
intersecting lines on the surface correspond to con-
stant ρKK and θKK , respectively. The numbers on
the fringe indicate the value of θKK , the fringe
itself is defined by ρKK = 1

in the observable space of Adir
CP , Amix

CP and 〈B〉. In Fig. 1,
we show this surface, where each point corresponds to a
given value of ρKK and θKK . It should be emphasized that
this surface is theoretically clean since it relies only on the
general SMparametrization ofB0

d → K0K̄0. Consequently,
should futuremeasurements give a value in observable space
that should not lie on the SM surface, we would have
immediate evidence for NP contributions to b̄ → d̄ss̄FCNC
processes. If we consider a fixed value of 〈B〉, we obtain
ellipses in the Adir

CP –Amix
CP plane, which are described by

[
Adir

CP

aAdir
CP

]2

+

[
Amix

CP − A0

aAmix
CP

]2

= 1 , (17)

with

A0 =
[

〈B〉 − 2 sin2 γ

〈B〉

]
sin(φd + 2γ) (18)

and

aAdir
CP

= 2

√
〈B〉 − sin2 γ

〈B〉 | sin γ| ,

aAmix
CP

= aAdir
CP

| cos(φd + 2γ)| . (19)

In Fig. 2, we show these ellipses for various values of 〈B〉.
Since sin(φd + 2γ) = 0.05 and cos(φd + 2γ) = −1.00 for
the central values of (13), we have actually to deal – to a
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Fig. 2. The ellipses arising in the Amix
CP –Adir

CP plane for given values of 〈B〉, with the associated values of ρKK and θKK . As in
Fig. 1, we have chosen φd = 47◦ and γ = 65◦
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good approximation – with circles around the origin in the
case of this figure.

In the derivation of (17), we have assumed that 〈B〉 −
sin2 γ > 0, which enters in (19). In fact, if we consider (16)
and vary ρKK and θKK as free parameters, while keeping
γ fixed, we find that 〈B〉 takes the following absolute min-
imum:

〈B〉min = sin2 γ = 0.82 +0.08
−0.10 , (20)

which corresponds to

ρKK = cos γ = 0.42 ± 0.11 , θKK = 0◦ , (21)

yielding

Adir
CP = 0 , Amix

CP = − sin(φd + 2γ) = − (0.05 ± 0.25) .
(22)

The numerical results in (20)–(22) were calculated with the
help of (13). It is amusing to note that the associated values
of ρKK and θKK are very close to the case of top-quark
dominance, as can be seen in (10).

2.3 Extraction of 〈B〉
Whereas Adir

CP and Amix
CP can be directly obtained from (2),

the extraction of 〈B〉 from (14) requires additional informa-
tion. To this end, we follow [9], and combine Bd → K0K̄0

with Bd → π+π−. It is then useful to write the decay
amplitude of the latter mode as

A(B0
d → π+π−) = −λ3APππ

tc

[
1 − eiγ 1

deiθ

]
, (23)

where Pππ
tc is theBd → π+π− counterpart of PKK

tc , and deiθ

is a hadronic parameter. Performing an isospin analysis of
the B → ππ system for the SM values of φd and γ in (13),
d and θ could be extracted from the B-factory data, with
the following result [10]:

d = 0.48 +0.35
−0.22 , θ = +

(
138 +19

−23

)◦
; (24)

similar values were subsequently obtained in [11]. If we
calculate now the CP -averaged Bd → π+π− branching
ratio with the help of (23), (14) implies

〈B〉 =
∣∣∣∣ Pππ

tc

PKK
tc

∣∣∣∣
2 [

BR(Bd → K0K̄0)
BR(Bd → π+π−)

]
Fππ(d, θ) , (25)

where we have introduced

Fππ(d, θ) ≡ 1 − 2d cos θ cos γ + d2

d2 = 6.57 +6.65
−4.20 , (26)

and we have neglected tiny phase-space differences. The
numerical value in (26) follows from the B → ππ analysis
performed in [10]. In the future, the corresponding un-
certainties, which are only of experimental origin, can be
reduced considerably. Let us emphasize that (25) is valid
exactly in the SM. In order to deal with the |Pππ

tc /PKK
tc |

factor, we neglect color-suppressed EW penguins, which
have an essentially negligible impact on the Bd → K0K̄0

andBd → π+π− modes [12], and use the SU(3) flavor sym-
metry of strong interactions. In the strict SU(3) limit, this
ratio equals one. If we take the factorizable SU(3)-breaking
corrections into account,1 we obtain∣∣∣∣ Pππ

tc

PKK
tc

∣∣∣∣
fact

=
[
fπFBπ(M2

π ; 0+)
fKFBK(M2

K ; 0+)

] [
M2

B −M2
π

M2
B −M2

K

]
= 0.64 ,

(27)
where fπ = 131 MeV and fK = 160 MeV denote the pion
and kaon decay constants, and the form factors
FBπ(M2

π ; 0+) andFBK(M2
K ; 0+) parameterize thehadronic

quark-current matrix elements 〈π−|(b̄u)V−A|B0
d〉 and

〈K0|(b̄s)V−A|B0
d〉, respectively. The numerical value in (27)

corresponds to the light-cone sum-rule analysis performed
recently in [14] (with δa1 = 0), while the form factors ob-
tained within the Bauer–Stech–Wirbel (BSW) model [15]
yield a value of 0.72.

2.4 Exploring non-factorizable
SU(3)-breaking corrections

Insights into the issue of factorization and SU(3)-breaking
effects of the hadronic Ptc penguin amplitudes can be ob-
tained with the help of B → πK modes, which originate
from b̄ → s̄ quark-level processes. Applying the formalism
of [10], we write[

BR(B± → π±K)
BR(Bd → π+π−)

] [
τBd

τB+

]
=

1
ε

∣∣∣∣ PπK
tc

Pππ
tc

∣∣∣∣
2 [

1 + δR

Fππ(d, θ)

]
,

(28)

where

ε ≡ λ2

1 − λ2 = 0.05 , (29)

and

δR = 2ρc cos θc cos γ + ρ2
c

−2
[
cosψ(1)

C + ρc cos(θc − ψ
(1)
C ) cos γ

]
a
C(1)
EW

+
[
a
C(1)
EW

]2
. (30)

The hadronic parameter ρceiθc is theB+ → π+K0 counter-
part of ρKKeiθKK . Because of the different CKM structure
of B+ → π+K0, we have

ρceiθc ≈ ε ρKKeiθKK , (31)

so that ρc is expected at the few percent level. The pa-
rameter aC(1)

EW and the strong phase ψ
(1)
C are related to

color-suppressed EW penguins. It is expected that aC(1)
EW

is also of O(10−2). Interestingly, the analysis performed
in [10] allows us to determine δR from the data with the
help of the following relation:

1 + δR =
1 − 2r cos δ cos γ + r2

R
, (32)

1 Chiral terms can be related through the Gell-Mann–Okubo
relation, as discussed in [13].
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where

R ≡
[

BR(B0
d → π−K+) + BR(B̄0

d → π+K−)
BR(B+ → π+K0) + BR(B− → π−K̄0)

]
τB+

τBd

= 0.91 ± 0.07 , (33)

and the hadronic parameters

r = 0.11+0.07
−0.05 , δ = +(42+23

−19)
◦ (34)

were fixed through

reiδ =
ε

d
ei(π−θ) (35)

from the B → ππ analysis, which yields (24). Following
these lines, we obtain

δR = 0.036 +0.094
−0.079 , (36)

which is nicely complemented by the experimental re-
sults [5] for the direct CP asymmetry

Adir
CP (B± → π±K)

≡ BR(B+ → π+K0) − BR(B− → π−K̄0)
BR(B+ → π+K0) + BR(B− → π−K̄0)

= −0.02 ± 0.06 , (37)

taking the following form:

Adir
CP (B± → π±K) (38)

= −2ρc

[
sin θc − a

C(1)
EW sin(θc − ψ

(1)
C )

1 + δR

]
sin γ .

Consequently,wehaveno experimental evidence for anoma-
lously large values of ρc and aC(1)

EW . In particular, we do not
find indications for an enhancement of the latter parameter
describing the color-suppressed EW penguin contributions,
in contrast to the claims made recently in [16].

If we write now∣∣∣∣ Pππ
tc

PπK
tc

∣∣∣∣ = ξn−fact
SU(3)

∣∣∣∣ Pππ
tc

PπK
tc

∣∣∣∣
fact

with
∣∣∣∣ Pππ

tc

PπK
tc

∣∣∣∣
fact

=
fπ

fK
,

(39)
we obtain from (28) with the help of (32) and (35)

ξn−fact
SU(3)

= fK

fπ

√
1
ε

[
d2 + 2εd cos θ cos γ + ε2

1 − 2d cos θ cos γ + d2

] [
BR(Bd → π+π−)
BR(Bd → π∓K±)

]

= 1.01+0.48
−0.37 , (40)

where the numerical value follows from the analysis in [10].
The current B-factory data do therefore not indicate a
deviation of ξn−fact

SU(3) fromone, although the uncertainties are
still large. In the future, (40) can be determined with much
better accuracy. In particular, since this expression involves
only B decays with charged pions and kaons in the final

state,2 it should be possible to explore it in a powerfulway at
LHCb [17]. A similar comment applies to the determination
of (26). It should be noted that (40) does actually not
only probe non-factorizable SU(3)-breaking effects, but
also the importance of penguin annihilation topologies,
which contribute to Bd → π+π− and Bd → K0K̄0 (and
are implicitly included in Pππ

tc and PKK
tc , respectively),

but do not contribute to PπK
tc . Their importance can be

explored through the Bd → K+K−, Bs → π+π− system.
The experimental upper bounds on the former decay [10],
as well as the numerical value in (40), do not indicate
any enhancement.

2.5 Lower bounds on the Bd → K0K̄0 branching ratio

By the time all Bd → K0K̄0 observables can be measured
with a reasonable accuracy, we will have a good picture
of (40). We may then extrapolate correspondingly to the
determination of |Pππ

tc /PKK
tc | through (27), allowing us to

relate 〈B〉 to theCP -averagedBd → K0K̄0 branching ratio
with the help of (25). For the following analysis, we will just
use (27), complementing it with the numerical result in (26)
and BR(Bd → π+π−) = (4.6±0.4)×10−6 [5]. We are then
in a position to convert the lower bound in (20) into the
following lower bound for the CP -averaged Bd → K0K̄0

branching ratio:

BR(Bd → K0K̄0)min (41)

=
(
1.39+1.54

−0.95

) ×
[

FBK(M2
K ; 0+)

0.331
0.258

FBπ(M2
π ; 0+)

]2

× 10−6.

In this expression, we made the dependence on the form
factors explicit, where the numerical values refer to [14].
If we use the BSW form factors [15], the lower bound on
BR(Bd → K0K̄0) is reduced by about 20%.

Interestingly, a picture similar to the one of (41) emerges
also from a very different avenue: it is a nice feature of (25)
that this relation uses only b̄ → d̄ transitions. However, it
is also useful to combine B0

d → K0K̄0 with the b̄ → s̄
transition B+ → π+K0. As we have noted above, in doing
this we have to neglect the penguin annihilation topologies
contributing to the former mode. Neglecting phase-space
differences for simplicity, we may then write

〈B〉 =
1
ε

∣∣∣∣ PπK
tc

PKK
tc

∣∣∣∣
2

(1 + δR)
[

BR(Bd → K0K̄0)
BR(B± → π±K)

]
τB+

τBd

,

(42)
where∣∣∣∣ PπK

tc

PKK
tc

∣∣∣∣
fact

=
[
FBπ(M2

K ; 0+)
FBK(M2

K ; 0+)

] [
M2

B −M2
π

M2
B −M2

K

]
= 0.79 .

(43)

2 The determination of d and θ relies only on the measurement
of the CP -violating Bd → π+π− observables, yielding a twofold
solution. Using additional information on the CP -averaged
Bd → π0π0 branching ratio, this ambiguity can be resolved,
thereby yielding the single solution in (24) [10].
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The numerical value in (43) corresponds again to the light-
cone sum-rule analysis performed in [14] (with δa1 = 0).
If we now use BR(B± → π±K) = (21.8 ± 1.4) × 10−6 [5],
τB+/τBd

= 1.086 ± 0.017, as well as (36) and (43), (42)
allows us to convert (20) into the following lower bound:

BR(Bd → K0K̄0)min (44)

=
(
1.36+0.18

−0.21

) ×
[

FBK(M2
K ; 0+)

0.331
0.258

FBπ(M2
K ; 0+)

]2

× 10−6.

In comparison with (25), the advantage of (42) is obviously
that the B → ππ analysis enters only through δR, which
has a small numerical impact.This feature is nicely reflected
by the errors of (44), which are considerably reduced with
respect of (41), while the central values are very similar. On
the other hand, we have to rely on the neglect of the penguin
annihilation topologies in B0

d → K0K̄0, so that (25) is
conceptually more favorable.

In view of the different assumptions entering (41) and
(44), we consider it as very remarkable to arrive at such a
consistent picture (see also (40)). Looking at (1), we observe
that these lower SM bounds are very close to the current
experimental upper bound, thereby suggesting that the
observation of the decay B0

d → K0K̄0 at the B factories
is just ahead of us. If we assume again that the penguin
annihilation contributions to B0

d → K0K̄0 are small, the
decayB+ → K+K̄0 has a very similar branching ratio; the
current experimental upper bound is given by 2.5 × 10−6

(90% C.L.) [5]. The latter mode is the U -spin counterpart
of B+ → π+K0, i.e. both channels are related to each
other by interchanging all down and strange quarks, and
was discussed in the context of dealing with the parame-
ter ρc [10, 18].

2.6 Upper bounds on 〈B〉 and ρKK

It is also interesting to convert the experimental upper
bound in (1) into upper bounds for 〈B〉. Using (25) and (42),
we obtain

〈B〉max =
(
0.88+0.90

−0.57

)
×

[
FBπ(M2

π ; 0+)
0.258

0.331
FBK(M2

K ; 0+)

]2

×
[

BR(Bd → K0K̄0)
1.5 × 10−6

]
(45)

and

〈B〉max =
(
0.91+0.10

−0.09

)
×

[
FBπ(M2

K ; 0+)
0.258

0.331
FBK(M2

K ; 0+)

]2

×
[

BR(Bd → K0K̄0)
1.5 × 10−6

]
, (46)

respectively. We observe that the numerical values in (45)
and (46) are very close to the lower bound in (20), which is
of course no surprise because of the discussion given above.
The interesting aspect of an upper bound for 〈B〉 is that

it allows us to obtain an upper bound for ρKK with the
help of the following relation:

ρKK < |cos γ| +
√

〈B〉max − sin2 γ , (47)

where the central values in (45) and (46) correspond for
γ = 65◦ to ρKK < 0.66 and ρKK < 0.72, respectively, but
the uncertainties remain sizeable.

Looking at (31), we see that these upper bounds for
ρKK imply that ρc is actually tiny, in accordance with
the discussion after (38). In [10], the experimental upper
bound for BR(B± → K±K) discussed above was con-
verted into ρc < 0.1 with the help of the U -spin relation to
BR(B± → π±K), which would conversely correspond to
ρKK � 2. Consequently, (47) yields stronger constraints
on this parameter.

2.7 Comments on a different avenue: extraction of γ

The analysis discussed above depends on the value of γ.
This parameter enters explicitly in the corresponding for-
mulae, but also implicitly through the values of d and θ
in (24), which follow from the direct and mixing-induced
CP asymmetries ofBd → π+π− and are actually functions
of γ [10]. However, if we do not assume that γ is known, it is
easy to see that the determination of the threeBd → K0K̄0

observables Adir
CP , Amix

CP and 〈B〉 allows us to extract simul-
taneously ρKK , θKK and γ, up to discrete ambiguities.
This feature is not surprising, since it was suggested in [9]
to complement theCP -violatingBd → π+π− asymmetries
with the observables provided byBd → K0K̄0 to deal with
the famous penguin problem in the former channel and to
determine the angle α of the unitarity triangle. We have
just encountered a different implementation of this strat-
egy. Alternative methods to extract γ from Bd → K0K̄0

were proposed in [19], combining this channel with its U -
spin partner Bs → K0K̄0.

3 Correlations with the B → ππ system

The decayB0
d → K0K̄0 will also allow us to obtain valuable

insights into the substructure of theB → ππ system. In the
analysis of these decays in [10], another hadronic parameter,

xei∆ ≡ Cππ + (Pππ
tu − Eππ)

Tππ − (Pππ
tu − Eππ)

, (48)

was introduced, where Cππ and Tππ are the strong ampli-
tudes of color-suppressed and color-allowed tree-diagram-
like topologies, respectively, Pππ

tu ≡ Pππ
t −Pππ

u is defined in
analogy to Pππ

tc , and Eππ describes an exchange topology.
In analogy to the determination of d and θ (see (24)), x
and ∆ can also be extracted from the B → ππ data, with
the following result:3

x = 1.22+0.26
−0.21 , ∆ = −

(
71+19

−26

)◦
. (49)

3 There is also a second solution for (x, ∆), which is, however,
disfavored by the B → πK data.
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Fig. 3. The contours in the θKK–ρKK plane corresponding
to the central values of (d, θ) and (x, ∆) in (24) and (49),
respectively, for various values of aππ

2 and ∆ππ
2 ∈ [0◦, 360◦]

If we now introduce the “color-suppression” parameter

aππ
2 ei∆ππ

2 ≡ Cππ

Tππ
, (50)

neglect the exchange amplitude Eππ, which is expected to
play a minor role and can be explored with the help of
the Bd → K+K−, Bs → π+π− system [10], and use the
SU(3) flavor symmetry of strong interactions, we obtain

ρKKeiθKK =
[
aππ
2 ei∆ππ

2 − xei∆

aππ
2 ei∆ππ

2 + 1

]
e−iθ

d
. (51)

In Fig. 3, we illustrate the resulting contours in the θKK–
ρKK plane for various values of aππ

2 and ∆ππ
2 ∈ [0◦, 360◦],

taking also into account that values of ρKK being signifi-
cantly larger than 1 are disfavored because of the discussion
in Sect. 2.6. In order to simplify the analysis,wehave consid-
ered the central values of (d, θ) and (x,∆) in (24) and (49),
respectively. By the time the CP -violating Bd → K0K̄0

observables can be measured, much more accurate deter-
minations of these parameters will anyway be available. As
soon as ρKK and θKK are extracted from the Bd → K0K̄0

observables, (51) allows us to determine aππ
2 and ∆ππ

2 with
the help of

aππ
2 ei∆ππ

2 =
xei∆ + deiθρKKeiθKK

1 − deiθρKKeiθKK
. (52)

Following [10], we may then also determine the hadronic
parameter ζππei∆ππ

ζ ≡ Pππ
tu /Tππ, as well as Pππ

tc /Tππ, so
that we are in a position to resolve the whole substruc-
ture of the B → ππ system. In particular, we may then pin
down the interference effects between the different hadronic
penguin amplitudes, and may decide which one of the pat-
terns suggested in the literature (see, for instance, [10,20])
is actually realized in nature.

If we look at Fig. 3, we observe that upper bounds for
ρKK correspond to lower bounds for aππ

2 , as illustrated
in Fig. 4. For ρKK � 0.9, we obtain aππ

2 � 0.6. Conse-
quently, the rather stringent upper bounds for ρKK follow-
ing from (47) require a sizeable deviation from the näıve
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Fig. 4. The correlation between the upper bound for ρKK

and the corresponding lower bound for aππ
2 with the associated

values of θKK and ∆ππ
2 for the case shown in Fig. 3

value of aππ
2 ei∆ππ

2 ∼ 0.25. This observation is in accor-
dance with discussion given in [10], putting it on more
solid ground. In this picture, we have destructive interfer-
ence between the Pππ

t and Pππ
c amplitudes, whereas the

interference between Pππ
t and Pππ

u is constructive, with
|Pππ

t /Tππ| ∼ |Pππ
u /Tππ| ∼ 0.25. Moreover, 0.5 � aππ

2 �
0.7 with ∆ππ

2 ∼ 290◦ is suggested, where ρKK is actually
close to its current experimental upper bounds discussed
in Sect. 2.6, as can be seen in Fig. 4.

Let us finally come back to the CP -violating observ-
ables Adir

CP and Amix
CP of the decay B0

d → K0K̄0. In Fig. 5,
we consider the Amix

CP –Adir
CP plane and show the contours

for different values of aππ
2 , where each point is parameter-

ized by a given value of∆ππ
2 . In accordance with our upper

bounds for ρKK , we assume that ρKK < 0.9; the contours
are dashed where this bound is violated. The shaded region
is calculated with the help of (51) for the central values of
(d, θ) and (x,∆) in (24) and (49), respectively, imposing the
constraints of ρKK < 0.9 and aππ

2 < 0.9. As far as the latter
bound is concerned, we allow for values being significantly
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Fig. 5. The contours in the Amix
CP –Adir

CP plane corresponding
to different values of aππ

2 between 0.2 and 1. The contours
are drawn solid for ρKK ≤ 0.9 and dashed for ρKK > 0.9.
The shaded region illustrates the area where aππ

2 < 0.9 and
ρKK < 0.9
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larger than the range discussed above to be on the conser-
vative side. From the position of the contours it can be seen
how this region changes for different upper bounds on aππ

2 .
We observe that an interesting pattern emerges, where
negative values of the mixing-induced B0

d → K0K̄0 CP
asymmetry are preferred. In order to complement Fig. 5,
we show in Fig. 6 the curve corresponding to the correla-
tion between the lower bounds on aππ

2 that are implied by
upper bounds on ρKK , as illustrated in Fig. 4.

It should be noted that the analysis performed in this
section – and the pattern in the Amix

CP –Adir
CP plane – do not

depend on the SU(3)-breaking ratio of the FBπ and FBK

form factors that we encountered in Sect. 2. This quantity
enters only implicitly when we impose the upper bounds for
ρKK that are extracted from the current B-factory data.

4 Conclusions

In our analysis of the penguin mode B0
d → K0K̄0, we have

first shown that this channel can be efficiently character-
ized in the SM through a theoretically clean surface in
the space of its observables Adir

CP , Amix
CP and 〈B〉. Whereas

the CP asymmetries can straightforwardly be determined
from time-dependent rate measurements, the extraction
of 〈B〉 from the CP -averaged B0

d → K0K̄0 branching ra-
tio requires additional information. This can be obtained
from the B → ππ system with the help of the SU(3) flavor
symmetry, including the factorizable SU(3)-breaking cor-
rections through an appropriate form-factor ratio; we have
also discussed how insights into non-factorizable SU(3)-
breaking corrections of the relevant hadronic penguin am-
plitudes can be obtained, and have shown that the cur-
rent B-factory data are consistent with small effects, al-
though the errors are still large. Alternatively, 〈B〉 can also
be determined with the help of the CP -averaged B± →
π±K branching ratio, requiring the additional assump-
tion of small penguin annihilation contributions to B0

d →
K0K̄0. For our numerical analysis, we have used theSU(3)-
breaking form-factor ratio obtained in a recent light-cone

sum-rule calculation, which is consistent with the BSW
model; further analyses are desirable.

Following these lines,wepointed out that there is a lower
bound for the CP -averaged Bd → K0K̄0 branching ratio
within the SM, where theB → ππ andB± → π±K avenues
give remarkably consistent pictures. The interesting feature
of this lower bound is that it is found to be very close to
the current experimental upper bound. Consequently, we
expect that the decay B0

d → K0K̄0 will soon be observed
at the B factories.

Finally, we have explored the interplay between B0
d →

K0K̄0 and the B → ππ system, where the former chan-
nel allows us to resolve the whole hadronic substructure
of the latter modes. In particular, we have shown that
upper bounds for ρKK imply lower bounds for the color-
suppression factor aππ

2 , pointing to a sizeable deviation
from the näıve value of aππ

2 ei∆ππ
2 ∼ 0.25. Moreover, we

have analyzed the impact on the allowed region in the
plane of the CP -violating Bd → K0K̄0 observables, and
found that the current B-factory data have a preference
for negative values of the corresponding mixing-induced
CP asymmetry Amix

CP . By the time these quantities can be
measured, we will have a much better picture of the pa-
rameters entering this analysis, allowing us to perform an
interesting test of the SM description of b̄ → d̄ss̄ FCNC
processes, which are currently essentially unexplored. The
full implementation of these strategies should provide an
interesting playground for the planned super-B factories.
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